TOPODESK

Teil: Rasterdaten

toposoft

Aachen, 2. Dezember 2020

toposoft

Gesellschaft für Datenbanken und Applikationen mbH Soerser Weg 10, 52070 Aachen – Tel.: 0241 927892-0 Geschäftsführer: Markus von Brevern Amtsgericht Aachen HRB 17807 E-Mail: info@toposoft.de ⋅ http://www.toposoft.de

Kapitel 1

Rasterdaten

1.1 Übersicht der wesentlichen Eigenschaften

- Schnelles Einlesen von Rastern und Ausgeben von Zeitreihen möglich
- Geometrisch exakte Auswertung von Rastern
- Langzeitarchivierung durch kompaktes Ablageformat begünstigt
- dynamischer Zugriff
- Verknüpfung verschiedener Raster unterschiedlicher Kachelgröße
- Multi-Parameter-Raster (z.B. Ensembledaten)
- Vielzahl von Inputformaten: ESRI, Grib(2), NetCDF(4), ZAMG, DWD-Radolan-Formate
- Anbindung an tstp. Ansteuerung über Shape. Vereinigung mit TopoDesk-Messreihen
- Individuell anpassbar, z.B. Polarkoordinaten oder weitere Inputformate

1.2 Funktionsweise von Rasterdaten

Rasterdaten (z.B Radardaten) sind zweidimensionale Daten und beschreiben somit die Datenlage einer Fläche. Diese Fläche ist in regelmäßige Teilflächen eingeteilt, sog. Kacheln (s. Abb).

Die Rasteranfrage an unsere Raster-Zeitreihen-Datenbanken (Raster-ZR-DB) erfolgt über AZUR oder den tstp-Server. Diesem wird eine Menge von Polygonen (Flächen, z.B. Teileinzugsgebiete) in Form einer Shape-Datei übermittelt. Im Bild oben ist ein solches Polygon dargestellt. Die Polygone werden mit den Kacheln verschnitten. Für die am Rand abgeschnittene Kacheln wird jeweils ein Gewicht/ Anteil an der Gesamtkachel berechnet (s. Abb.). Alle so gefilterten Kacheln werden inkl. Ihres Gewichts gemittelt. Dann werden über den gewünschten Zeitraum zu allen Kacheln die Werte ermittelt.

Abbildung 1.1: Kacheln

1.3 Die Raster-ZR-DB

Das Einsatzgebiet der Raster-ZR-DB liegt in der Bereitstellung von Zeitreihen, die aus Rasterdaten erzeugt werden. Der Zugriff auf die Daten ist daraufhin optimiert. Dabei liegt Fokus auf dem vollautomatischen Datenfluss. Die Daten müssen nicht in einem Zwischenschritt bereitgestellt werden, sie stehen immer zur Verfügung. Die Werte sind in der Raster-ZR-DB so gespeichert, dass Anfragen schnell bearbeitet werden können. Aus diesem Grunde werden in der Raster-ZR-DB keine Raster selbst gespeichert; ebenfalls ist es nicht vorgesehen, Raster aus einer Raster-ZR-DB zu generieren. Um die Performance der Datenabfrage zu gewähren, werden die Daten nicht komprimiert, sondern kompakt abgelegt.

Die Raster-ZR-DB ist so gestaltet, dass Zugriffe über den gesamten vorhandenen Zeitraum gleich schnell erfolgen. Das kompakte Ablageformat der Daten erlaubt neben dem operationellen Einsatz auch den Einsatz als Langzeitarchiv: Eine Rastergröße von 301x171 (s. Beispiel oben) erzeugt bei einem Zeitraster von 15 Minuten ca. 7 GB pro Jahr.

Der Datenumfang wird von der Raster-ZR-DB dynamisch erkannt. Dadurch können Daten problemlos gelöscht, archiviert und auch Archivdateien wieder zurückgespielt werden. Raster-ZR-DB können mithilfe von Links auf verschiedenen Festplatten verteilt werden.

1.4. FEATURES

Abbildung 1.2: Gewichte

1.4 Features

• Ensembles In einer Raster-ZR-DB können beliebig viele Parameter gleichzeitig parallel vorgehalten werden. Wenn Parameter sich nur durch ein Zusatzmerkmal unterscheiden (z.B. advektiver und konvektiver Niederschlag), kann man das neue ZR-Attribut ParMerkmal benutzen. Dieses kommt auch bei der Verarbeitung von Ensemble-Daten zu Einsatz. Im Beispiel sind das 51 verschiedene stochastische Ansätze, den Niederschlag vorherzusagen. Diesen wird der Parameter Niederschlag und die ParMerkmale 00 bis 50 zugewiesen.

Eine Abfrage nach dem Parameter Niederschlag führt dann zu einem Ergebnis von 51 Zeitreihen, die hintereinander ausgegeben werden.

 Verknüpfung verschiedener Raster unterschiedlicher Kachelgröße Angenommen, der Parameter Niederschlag liege in einem 1x1km-Raster, die Lufttemperatur jedoch in einem 0,1x0,1-Grad-Raster vor. Durch die dynamische Verschneidung der Polygone mit den Kacheln können diese beiden Parameter problemlos nebeneinander gestellt werden.

Die tstp-Schnittstelle macht es möglich, auf einfache Weise die Daten aus verschiedenen Rastern zeitlich aneinanderzuhängen. Die Abfrage könnte z.B. die ersten sechs Stunden einer mehrtägigen Vorhersage aus einem feinen Raster beziehen, das alle 15-Minuten einen Wert enthält. Die nächsten 42 Stunden könnten aus einem gröberen Raster bezogen werden, das pro Stunde einen Wert enthält, und die dann folgenden 120 Stunden aus einem noch gröberen. Im Ergebnis erhält man durch drei einfache Anfragen an den tstp-Server ein kontinuierliches Stück Zeitreihe über 168 Stunden. Wohlgemerkt muss hier kein Zwischenschritt erfolgen, die Daten liegen aus Sicht des Datenverbrauchers kontinuierlich an.

Inputformate Rasterdaten in einer Vielzahl von Formaten eingelesen werden (ESRI, Grib(2), Net-CDF(4), ZAMG, DWD-Radolan-Formate ASCII-Formate) eingelesen werden. Die Zuordnung von Parameter, ParMerkmal, Einheit, Faktor und Versatz erfolgt innerhalb der Raster-ZR-DB. Es werden aber immer Rohdaten, so wie sie in den Ausgangsdateien stehen, gespeichert. Erst bei der Abfrage werden beispielsweise Kelvin in Celsius oder m in cm umgerechnet. Die Formate werden, analog zu den ZR-Inputformaten, automatisch erkannt. Auf Kundenwunsch kann hier jedes Format implementiert werden.

1.5 Raster in der TopoDesk-Karte

Raster bieten die Möglichkeit, den zeitlichen Verlauf eines Parameters auf der Karte in Rasterkacheln farbig zu visualisieren. Dazu werden Raster aus der TopoRast-Datenbank in die Karte geladen. Über die Rasterkacheln ist fortan per Mausklick ein direkter Zugriff auf die entsprechende(n) Zeitreihe(n) mit TopoVit möglich.

Abbildung 1.3: TopoDesk mit geladenem Raster

Vorgehen:

1. Raster laden:

Wählen Sie im Rahmen *Raster* über den Button <u>laden</u> ein zur Verfügung stehendes Raster aus, welches als Layer in die Karte geladen werden soll.

Raster		🛛 🖈 Auswahl <@ariel> 🗸 🔨 😒
Rastername:	Laden	Raster laden
Kanal	Niederschlag 💌 N (tagsum)	c / 40x48 / [+-Infty - +-Infty] cosm2_sum / 40x48 / [2018 - 05.10.2018 15:00] cosmod2_dsum / 179x148 / [2019 - 27.09.2019 0
Abspielen: Einzelbild:	▶ II - ⊚ +	cosmod2_eps / 63x64 / [2019 - 17.01.2019 03:00 cosmod2_uli / 179x148 / [2018 - 15.03.2018 03:0 cosmode-1-n / 39x43 / [2012 - 03.11.2012 00:00] dxoffline / 91x106 / [2018 - 01.11.2018 07:25]
Dauerstufe:	1d 💌 hN 💌	entrot / 601x451 / [2018 - 05.10.2018 15:00] entrotteil / 46x46 / [2018 - 05.10.2018 15:00] Iconeu / 90x50 / [2016 - 04.03.2019 18:00]
Max. DS-Sum.:	Berechnen	OK Abbruch

Abbildung 1.4: links: Rahmen Raster; rechts: vorhandene Raster

Hinweis:

- laden Sie mehr als ein Raster in die Karte, haben Sie mit der Tabelle Rastername die Möglichkeit, das für die Simulation relevante Raster auszuwählen
- über Steuerung im Rahmen Karte können die Rasterlayer wieder aus der Karte entfernt werden
- die Nomenklatur der Raster folgt dem Schema: Name / Größe des Rasters / [Startjahr -Entdatum der hinterlegten Daten]

2. Kanal auswählen:

Wählen Sie in der Tabelle Kanal, welcher Parameter dargestellt werden soll.

Hinweis:

- Kanäle sind in der Rasterdatenbank hinterlegt
- 3. Abspielen der Simulation:

Nutzen Sie die gängigen Symbole *Play* und *Pause*, um die Wiedergabe der Visualisierung zu steuern. Über *Minus* und *Plus* springen Sie in der pausierten Visualusierung einen Zeitschritt zurück bzw. vor.

Hinweis:

- Den Zeitraum der Visualisierung können Sie in der TOPODESK-Hauptoberfläche im Rahmen *Bearbeitungszeitraum* mit den Feldern *Von* und *Bis* vorgeben bzw. eingrenzen. Der Zeitbereich muss durch die im Raster hinterlegten Daten abgedeckt sein
- in der Menüleiste der TOPODESK-Oberfläche unter Raster → Einrichten können Farben parameterabhängig verschiedenen Werteintervallen für die Visualisierung zugewiesen werden. Entsprechend dieser Zuordnung wird beim Abspielen eine Legende in der Karte dargstellt

r	ameter:	Niederschlag		Nieder	schlag		Qffnen.)	Speicherr	n Neue F	arbe anlege	n			
e	ue Zelle	Zelle löschen												
	Farbnan	10	mm/h	5min	10min	15min	20min	30min	45min	1h	90min	2h	3h	4h
		Weiß	0,01	0,01		0,10		0,10		0,01		0,01	0,10	
		Taubenblau	0,10	0,10		0,30		0,30		0,50		1,00	1,00	
		Azur	0,30	0,30		0,50		0,50		1,00		2,00	2,00	
		Blassgrün	0,50	0,50		1,00		1,00		2,00		3,00	3,00	
		SRI1	1,00	1,00		2,00		2,00		3,00		4,00	4,00	
		Wiesengrün	2,00	2,00		3,00		3,00		5,00		6,00	6,00	
		SRI3	3,00	3,00		4,00		4,00		7,00		8,00	8,00	
		SRI4	4,00	4,00		5,00		5,00		9,00		10,00	10,00	
		Honig	5,00	5,00		6,00		6,00		11,00		12,00	15,00	
		SRI5	6,00	6,00		7,00		7,00		13,00		15,00	20,00	
		Orange	7,00	7,00		8,00		8,00		15,00		20,00	25,00	
		SRI6	8,00	8,00		9,00		9,00		20,00		25,00	30,00	
		SRI8	9,00	9,00		10,00		10,00		25,00		30,00	35,00	
		SRI9	10,00	10,00		12,00		12,00		30,00		35,00	40,00	
		SRI11	11,00	11,00		15,00		15,00		35,00		40,00	45,00	
		SRI12	15,00	15,00		20,00		20,00		40,00		50,00	50,00	
		Sattlila	999,00	999,00		999,00		999,00		999,00		999,00	999,00	
_														

Abbildung 1.5: Zuweisung der Farben zur Visualisierung der Raster

4. Vom Layer zu TopoVit:

(a) über den Raster-Layer:

Nutzen Sie die mittlere Maustaste, um die Daten einer Rasterkachel direkt in *TopoVit* darzustellen. Um die Daten mehrerer Kacheln in *TopoVit* zu öffnen, markieren Sie die gewünschten Kacheln mit der linken Maustaste und öffenen Sie *TopoVit mit Vorauswahl*.

Abbildung 1.6: Kacheln, Mehrfachselektion

Hinweis:

- der Darstellungsbereich in *TopoVit* ist der Bearbeitungszeitraum der TOPODESK-Oberfläche
- der angezeigte Stationsname setzt sich aus dem Namen der TopoRast-Datenbank und der Kachelnummer zusammen
- (b) über den Einzugsgebiet-Layer

Nutzen Sie den Button <u>Steuerung</u> im Rahmen *Karte*, um den Layer des Einzugsgebietes in den Vordergrund zu holen und klickbar zu machen. Über einen Klick mit der mittleren Maustaste auf den Layer des entsprechenden Einzugsgebietes gelangen Sie zu den entsprechenden Daten in *TopoVit*.

Hinweis:

 geladene Raster-Layer müssen ganz aus der Karte ganz entfernt werden (s.o.), um den Einzugsgebiet-Layer klickbar zu machen • im Gegensatz zur (Mehrfach-)Selektion von Raster-Kacheln im Raster-Layer haben die Einzugsgebiet-Layer den Vorteil, dass die Daten der Einzugsgebietsflächen bereits, anteilig an den entsprechenden Kachelfächen, gemittelt sind

1.6 Rasterdaten importieren

Im Hauptmenu gibt es auf der rechten Seite das Menu Raster. Dort finden Sie den Unterpunkt Importieren Damit gelangen Sie zu folgender Maske:

X	Rasterdaten importieren <@ariel>	\sim \sim \otimes
Bitte eine Raster-Datenbank wählen -> Einzelne Datei auswählen	wupperpolar / 72x42 / [2000 - 06.11.2001 07:35] Verzeichnis mit ZR-Daten auswählen Gewählt: tmp/klein Importieren	
	🛛 Auswahl <@ariel> 🗸 ^ 😣	
	Import kann je nach Datenumfang mehrere Stunden dauern.	
	CK Abbruch	

Abbildung 1.7: Raster importieren

Die obere Liste enthält alle vorhandenen Raster, aus denen Sie eins auswählen.

Es ist möglich , einzelne Dateien zu importieren, z.B. mit NetCDF-Daten. Sie wählen diese über den Button <u>Einzelne Datei auswählen</u>. Mit dem Button <u>Verzeichnis mit ZR-Daten auswählen</u> wählen Sie ein Verzeichnis, das ZR-Inputdaten enthält (z.B. uvf-Dateien) oder ZR Binärdateien.

Die gewählte Datei bzw das gewählte Verzeichnis wird im rechts daneben liegenden Eingabefeld aufgeführt. Es ist möglich, diesen Eintrag manuell zu erstellen bzw. zu ändern.

Mit dem Button Importieren starten Sie den Import. Wie im Bild erscheint eine Warnung, dass der Import lange dauern kann. Beispiel: der Import von 1820 UVF-Dateien, die jeweils 19 Jahre Daten enthalten (im Schnitt ca. 250.000 Werte) dauert unter Linux ca. drei Stunden.

Während des Imports werden Ablaufmeldungen in der Statuszeile angezeigt, die jeweils mit einem Zeitstempel versehen sind. Am Ende des Imports wird angezeigt, ob der Import erfolgreich war und wie lange er gedauert hat.

Abbildung 1.8: Ablaufmeldungen während des Imports

1.7 Organisation der Rasterdaten und intro

Alle Raster liegen im Unterverzeichnis raster des Startverzeichnisses. Die Raster speichern ihre Daten im Unterverzeichnis *rastername*.rzrdb In diesem Verzeichnis befindet sich das intro und die Clusterdateien bzw. zu jedem physikalischem Kanal ein Unterverzeichnis, in dem sich die Clusterdateien befinden.

1.7.1 Clusterdateien

Jede Clusterdatei enthält eine Anzahl Raster. Wieviele Raster in einem Cluster gespeichert werden, wird im intro mit der Variablen Slots festgelegt. Diese Anzahl ist nach dem Anlegen des ersten Clusters nicht mehr änderbar. Die Anzahl Slots sollte so gewählt werden, dass möglichst viele Raster in einen Cluster passen, dieser aber eine handhabere Maximalgröße nicht überschreitet. Handhabbar sind z.B. 500MB oder 1GB.

Die Clusterdateien sind nach dem Zeitstempel des ersten in ihr enthaltenen Rasters benannt. Die TopoRast-Funktionen stellen die Datenlage stets live fest. Alte Clusterdateien können also entfernt und im Bedarfsfall wieder hinzugefügt werden.

Beispiellisting des Verzeichnisses raster:

```
raster/gross.rzrdb/
raster/idw.rzrdb/
raster/klein.rzrdb/
raster/radolan.rzrdb/
raster/test.rzrdb/
```

Beispiellisting des Verzeichnisses raster/test.rzrdb:

```
test.rzrdb/huss/
test.rzrdb/intro
```

```
test.rzrdb/pr/
test.rzrdb/ps/
test.rzrdb/rlds/
test.rzrdb/rsds/
test.rzrdb/status
test.rzrdb/tas/
test.rzrdb/uas/
test.rzrdb/vas/
```

Beispiellisting des Verzeichnisses test.rzrdb/huss:

huss/20040722120000.cl

1.7.2 Die Datei intro

Das intro beschreibt alle Aspekte der Raster-ZR-Datenbank. Es legt die Größe der Raster, die Anzahl Raster per Cluster, die physikalischen Kanäle (PARAMETER) und ggf. die Anzahl der Ensemble-Elemente fest. Diese Angaben sind nach dem Anlegen eines Raster **nicht** mehr veränderbar.

Das intro kann auch Formel-Kanäle enthalten FORMEL. Diese sind nach Belieben ergänzbar oder löschbar.

Alle Einträge, die der Georeferenzierung dienen, können nachträglich geändert werden bzw. feinjustiert werden, das gilt für NULL, DELTA, ZONE, POLAR, ROTATION, ROTPOL0 und TRANSNULL.

Es gibt Einträge, die nur während des Imports herangezogen werden und die daher aus Gründen der Einheitlichkeit der Daten nicht mehr verändert werden sollten. Das betrifft ENSEMBLE, TILEOFFSET, IMPORTUTC, DESUM und CSVWERTERECHTS.

Unbedingt angegeben werden müssen:

NAME PARAMETER SIZE BPV=4 SLOTS NULL DELTA

Im Einzelnen gibt es:

1.7. ORGANISATION DER RASTERDATEN UND INTRO

Eintrag	Parameter	Erklärung	Beispiel
ΝΔΜΕ	name	Name der Raster-7R-DB ohne rzrdb	NAMF=eval
	siehe unten	nhvsikalischer Kanal	
FORMEL	siehe unten	virtueller Kanal	
	von - his	Bereich der Ensemble-Nummern	FNSFMBI F=0-30
SIZE	snalten zeilen	Anzahl Kacheln breit und hoch	SI7F=63 37
- BPV	zahl	muss fest 4 sein	BPV=4
	anzahl	Anzahl Raster pro Cluster	SI 0TS=1000
		Links unten UTM Grad oder GK	NULL=345500 5640
	r, y breite hoehe	Breite und Höhe einer Kachel	DELTA=1000 1000
DELIA		in moder Grad	DLLIA-1000,1000
	T η	Beim Import Daten erst ab da beziehen	TILFOFFSFT=20 56
70NE	string	UTM-Zone oder BMB-Zone	70NF=32U
	bool	Es liegt ein Polarraster vor	POI AR=True
	winkel	Drehwinkel in Grad im	ROTATION=10 34
NOTATION	winnei		101A110N-10.04
<u></u> ROTPOL0	r η	Koordinate des rotierten Pols in Grad	ROTPOL0=120 1 89
	x, y	Koordinate für Polar-Stereographische	$\frac{1011010112011,00}{\text{TRANSNULL}=10.60}$
INANSNOLL	x, y	Transformation in Grad	IRANSNOLL-10,00
TIMESTEP	distan 7	Zeitschritt bei Intervall-Daten	TTMFSTFP=1h
	distanz	Verschiebung wenn die Zeitpunkte	TIMEOFEST=50min
TIMEOTT SET		nicht Stunden-rund sind	
TIMERASTER	name	die Zeitstempel sind gerastert	TIMER ASTER=oval
	nume	Finfügen möglich	
	hool	Sollen die Daten beim Import von	TMPORTUTC=True
	0000	UTC nach MEZ verschoben werden?	111 0101010 1140
DESUM	bool	Sollen die in einer Importdatei vorlie-	DESUM=True
	0000	gende Summenlinie entsummt werden?	
CSVWERTERECHTS	bool	bei einem import von CSV-Daten	CSVWERTERECHTS=T
	0000	die Werte rechtsbetont?	

Zu beachten: NULL ist der linke, untere Punkt der linken unteren Kachel und nicht deren Mittelpunkt.

1.7.2.1 Aufbau der Parameter-Zeile

Syntax: PARAMETER = < param > | < einheit > | < geber > | < defart > | < faktor > | < offset > | < faktor > | < faktor > | < offset > | < faktor > | < faktor > | < offset > | < faktor > | < faktor > | < offset > | < faktor > | < faktor > | < offset > | < faktor > | < offset > | < faktor > | < faktor > | < offset > | < faktor > | < faktor > | < offset > | < faktor > | < offset > | < faktor > | < faktor > | < offset > | < faktor >

Beispiel: Parameter=Temperatur|°C|tas|I|1|-273.15

In diesem Beispiel werden aus dem Raster Temperatur-Intervallwerte erzeugt mit der Einheit °C. Der Geber ist tas. Von den Werten im Raster muss 273,15 abgezogen werden, damit aus Kelvin Grad Celsius werden.

1.7.2.2 Mögliche Formel

Syntax: FORMEL = < param > | < einheit > | < geber > | < formel >

Formel	Parameter	Beispiel
IMax IMin IMit ISum KIndex Quantil Diff	kanal, dist kanal, dist kanal, dist kanal, dist kanal, wert1, kanal, prozent kanal	<pre>IMax(tas,1mon) IMin(tas,1a) IMit(tas,1d) ISum(pr,1d) KIndex(pr, 0, 10,20) Quantil(pre, 50) Diff(pre)</pre>

Auch geschachtelte Formeln sind möglich. Beispiel Sum(KIndex(Sum(pr,1d),20),1a)Rechnet die Anzahl der Tage mit Niederschalgssumme >= 20mmpro Jahr aus. Eine Formel wäre also: FORMEL=NTage20|1|ntage20|ISum(KIndex(Sum(pr,1d),20),1a) Die Farbklassifikation müsste dann für den Parameter NTage20 angelegt werden.

Zu beachten: die Formel Quantil arbeitet nur auf Rastern mit Ensemblen. Es berechnet das Percentil grenze aus den Ensemble-Elementen.

Diff gibt pro Zeitpunkt die Differenz des Werts an diesem Zeitpunkt und des Werts am vorigen Zeitpunkt (Wertänderung) an. Lückewerte selbst bleiben Lücke, gehen jedoch als 0 ein, wenn sie abgezogen werden.

1.8 Rasterinterpolation mittels IDW (Invers disctance weighting)

Invers distance weighting ist eine deterministische Interpolationsmethode, die dazu genutzt wird, einen unbekannten Messwert a_0 an der Position x_0 aus bekannten Messwerten a_i von umliegendenen Punkten x_i abzuschätzen. Dabei wird angenommen, dass der Einfluss der bekannten Messwerte a_i in der Umgebung auf den gesuchten Wert a_0 mit steigender Entfernung abnimmt und umgekehrt. Man unterstellt also eine räumliche Korrelation der Messwerte.

Die Berechnung des Schätzwertes a₀ erfolgt nach der folgenden Formel:

$$a_0 = \frac{\sum_{i=1}^n \left(\frac{1}{d_i}\right)^p \cdot a_i}{\sum_{i=1}^n \left(\frac{1}{d_i}\right)^p}$$

Der Potenzwert p ist standardmäßig zu p=2 gesetzt, kann aber geändert werden, um die Gewichtung der Entfernung anzupassen. Je größer der Potenzwert gewählt wird, desto stärker nimmt der Einfluss von Messwerten mit steigender Distanz ab.

Abbildung 1.9: Beispielhafte Lagebeziehung von Messstellen mit zugehörigen Variablen

1.9 Ausführen des IDW()-Befehls mit AZUR

Zum Ausführen des Befehls mit AZUR sind fünf Parameter notwendig:

- eine Liste von Zeitreihen vom Typ ZRList (im Beispiel: zrl)
- eine reelle Zahl für die Potenz, mit der diw Entfernung gewichtet werden soll (im Beispiel: 2)
- eine reelle Zahl für den minimal gültigen Wert wmin (im Beispiel:-45)
- eine reelle Zahl für den maximal gültigen Wert wmax (im Beispiel: 45)
- einen Layer mit Koodinaten (d. Mittelpunkte) der Rasterkacheln (im Beispiel: L)

Der Befehl folgt folgender Syntax: IDW (ZRList zrl, Real Potenz, Real wmin, Real wmax, Layer L) Beispiel: IDW (zrl, 2, -45, 45, L)

Die Zeitreihenliste beinhaltet Eingangsdaten, welche in der IDW-Methode den bekannten Parameterdaten a_i (z-Wert in AZUR), sowie den Lagekoordinaten x_i (x,y-Wert in AZUR) der Messstellen in der Umgebung des Punktes x_0 entsprechen, dessen Schätzwert a_0 gesucht wird. Dabei werden nur z-Werte berücksichtigt, die innerhalb wmin bzw wmax liegen und nicht Lücke sind. Die Punkte x_0 eines Rasters, für welche die Schätzung des Parameters a_0 durchgeführt werden soll, werden dem Layer *L* entnommen, der aus 3D-Punkten besteht. Diese Punkte liefern also die x- und y-Koordinaten der Punkte x_0 (Rastermittelpunkte) und einen leeren z-Wert ($=a_0$), den es zu berechnen gilt. Für alle Punkte des Layers L wird eine Berechnung für z nach der IDW-Methode durchgeführt. Alle berechneten Werte außerhalb des Wertebereichs von wmin bis wmax werden auf die entsprechnende Grenze gezogen. Der Layer *L* ist also sowohl Eingangsparameter (x,y-Wert), als auch Ergebnis (z-Wert). Hinweis:

1. Der Layer L muss vorab mit dem Befehl *RZDBKoords()* definiert werden. Dazu ist eine geöffnete Raster-Zeitreihen-Datenbank (hier: rzdb) nötig. Im folgenden Beispiel wird ein Layer *L* aus der Raster-Zeitreihen-Datenbank *rzdb* erzeugt:

L := RZDBKoords (rzdb)

2. Nach der Berechnung der z-Werte mittels *IDW()* muss aus dem Layer *L* mit *LayerToRaster()* wieder ein Raster (hier: RS) erzeugt werden:

RS := LayerToRaster(L)

Die Kacheln des erzeugten Rasters RS enthalten nun den z-Wert.